RECOVERY OF ASH FROM LIGNOCELLULOSIC WASTE IN THE CEMENT INDUSTRY

Authors

  • LYAMINE BRIKI Department of Civil Engineering, University of Batna 2, Batna, Algeria.
  • BELKACEM BENZEROUAL Department of Geography and Territorial Planning, University of Batna 2, Batna, Algeria.
  • KAMEL ZIDANI Department of Mechanical Engieering, University of Batna 2, Batna, Algeria.

Keywords:

eco-cements, resistance, mortar, rice husks, compression, bending

Abstract

In this research we have targeted three objectives: an economic objective of minimizing energy expenditure, a technological objective of manufacturing a new cement by improving the mechanical performance of ordinary Portland cement, and an ecological objective of minimizing the resulting CO2 emissions from the decomposition of carbonates during cooking. To achieve these objectives, we have developed a new cement composed of a partial substitution of clinker with artificial pozzolans rich in silica, obtained by treatment of lignocellulosic residues, in this case rice husk ashes. This substitution is added to the clinker with percentages ranging from 25 to 75%. These substitutions were chosen based on the presence of silica that can react with portlandite (Ca(OH)2) resulting from the hydration of the cement, forming more C-S-H which improves the mechanical properties of the cement. The pozzolanic activity of these substitutions was examined by chemical analyzes and mechanical tests on mortar test pieces. Other techniques, namely X-ray diffraction (XRD), were used to visualize the pozzolanic power of the substitution used. Improving this reactivity is obtained by calcining these additions at temperatures of 750°C. This significantly reduces the CO2 emissions that accompany the production of Portland cement clinker.

References

Amato, I. (2013): Concrete solutions: Cement manufacturing is a major source of greenhouse gases. But cutting emissions means mastering one of the most complex materials known. – Nature 494(7437): 300-302.

Aruntaş, H.Y., Gürü, M., Dayı, M., Tekin, İ. (2010): Utilization of waste marble dust as an additive in cement production. – Materials & Design 31(8): 4039-4042.

Ayrinhac, F. (2005): Valorisation des cendres volantes de chaudière à lit fluidisé circulant dans la filière du génie civil. – INSA de Toulouse 181p.

Bajare, D., Bumanis, G., Upeniece, L. (2013): Coal combustion bottom ash as microfiller with pozzolanic properties for traditional concrete. – Procedia Engineering 57: 149-158.

Benhelal, E., Zahedi, G., Shamsaei, E., Bahadori, A. (2013): Global strategies and potentials to curb CO2 emissions in cement industry. – Journal of Cleaner Production 51: 142-161.

Benkaddour, M., Aoual, F.K., Semcha, A. (2009): Durabilité des mortiers à base de pouzzolane naturelle et de pouzzolane artificielle. – Nature & Technology 11p.

Briki, L., Bouacida, L.A., Lahbari, N. (2022): USE OF CALCINATION RESIDUE FROM RICE HUSK AS A SUBSTITUTE FOR CEMENT. – Stavební obzor-Civil Engineering Journal 31(2): 317-331.

Bui, D.D. (2001): Rice husk ash a mineral admixture for high performance concrete. – elft University Press 144p.

Bui, D.D., Hu, J., Stroeven, P. (2005): Particle size effect on the strength of rice husk ash blended gap-graded Portland cement concrete. – Cement and Concrete Composites 27(3): 357-366.

Cheriaf, M., Rocha, J.C., Pera, J. (1999): Pozzolanic properties of pulverized coal combustion bottom ash. – Cement and Concrete Research 29(9): 1387-1391.

Collins, F. (2010): Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. – The International Journal of Life Cycle Assessment 15: 549-556.

Flower, D.J., Sanjayan, J.G. (2007): Green house gas emissions due to concrete manufacture. - The International Journal of Life Cycle Assessment 12: 282-288.

Ganesan, K., Rajagopal, K., Thangavel, K. (2008): Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete. – Construction and Building Materials 22(8): 1675-1683.

Gineys, N. (2011): Influence de la teneur en éléments métalliques sur les propriétés techniques et environnementales du ciment portland. – IMT Nord Europe 118p.

González De La Cotera, M. (1982): Morteros ligeros de cáscara de arroz. IV Congreso Nacional de Ingeniería Civil. – Lima, Perú 10p.

Habert, G. (2014): Assessing the environmental impact of conventional and ‘green’cement production. In Eco-efficient construction and building materials. – Woodhead Publishing 39p.

Habert, G., Roussel, N. (2008): Comment concevoir un béton ayant un faible impact environnemental? – XXVIEMES RENCONTRES UNIVERSITAIRES DE GENIE CIVIL: AUGC 2008 9p.

Hendriks, C.A., Worrell, E., De Jager, D., Blok, K., Riemer, P. (1998): Emission reduction of greenhouse gases from the cement industry. – In Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, IEA GHG R&D Programme Interlaken Austria 6p.

Hernández, J.M., Middendorf, B., Gehrke, M., Budelmann, H. (1998): Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. – Cement and Concrete Research 28(11): 1525-1536.

Holcim Official Portal (2015): Holcim and Lafarge complete merger and create Lafarge Holcim, a new leader in the building materials industry. – Holcim Official Portal. Retrieved from:

https://www.holcim.com/media/media-releases/holcim-and-lafarge-complete-merger-and-create-lafargeholcim-a-new-leader-building-materials-industry

Hosseini, M.M., Shao, Y., Whalen, J.K. (2011): Biocement production from silicon-rich plant residues: Perspectives and future potential in Canada. – Biosystems Engineering 110(4): 351-362.

Jaturapitakkul, C., Roongreung, B. (2003): Cementing material from calcium carbide residue-rice husk ash. – Journal of Materials in Civil Engineering 15(5): 470-475.

Jauberthie, R., Rendell, F., Tamba, S., Cissé, I.K. (2003): Properties of cement-rice husk mixture. – Construction and Building Materials 17(4): 239-243.

Jauberthie, R., Rendell, F., Tamba, S., Cisse, I. (2000): Origin of the pozzolanic effect of rice husks. – Construction and Building Materials 14(8): 419-423.

Johar, N., Ahmad, I., Dufresne, A. (2012): Extraction, preparation and characterization of cellulose fibres and nanocrystals from rice husk. – Industrial Crops and Products 37(1): 93-99.

JRC, D.G. (2000): Integrated Pollution Prevention and Control (IPPC) Reference Document on Best Available Techniques in the Pulp and Paper Industry. – Luxembourg: Publications Office of the European Union 906p.

Kadri, E.H., Kenai, S., Ezziane, K., Siddique, R., De Schutter, G. (2011): Influence of metakaolin and silica fume on the heat of hydration and compressive strength development of mortar. – Applied Clay Science 53(4): 704-708.

Kurama, H., Kaya, M. (2008): Usage of coal combustion bottom ash in concrete mixture. – Construction and Building Materials 22(9): 1922-1928.

Mansaray, K.G., Ghaly, A.E. (1999): Thermal degradation of rice husks in an oxygen atmosphere. – Energy Sources 21(5): 453-466.

Mardani-Aghabaglou, A., Sezer, G.İ., Ramyar, K. (2014): Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point. – Construction and Building Materials 70: 17-25.

Mohammed, S., Elhem, G., Mekki, B. (2016): Valorization of pozzolanicity of Algerian clay: optimization of the heat treatment and mechanical characteristics of the involved cement mortars. – Applied Clay Science 132: 711-721.

Moir, G.K. (1983): Improvements in the early strength properties of Portland cement. – Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences 310(1511): 127-138.

Morsy, M.I.N. (2011): Properties of rice straw cementitious composite. – Universitäts-und Landesbibliothek Darmstadt 169p.

Murakami, K. (1969): Utilization of chemical gypsum for Portland cement. – ISCC Session 5: 457-510.

Parrott, L. (2002): Cement, concrete and sustainability. A report on the progress of the UK cement and concrete industry towards sustainability. – British Cement Association. Retrieved from:

https://www.thenbs.com/PublicationIndex/documents/details?Pub=BCA&DocID=278942

Rikioui, T., Tafraoui, A., Lebaili, S., Mekkaoui, A. (2011): Emploi du métakaolin de la région sud ouest d’Algérie dans la formulation du béton économique. – XXIXe Rencontres Universitaires de Génie Civil, Tlemcen 10p.

Salas, J., Alvarez, M., Veras, J. (1986): Lightweight insulating concretes with rice husk. – International Journal of Cement Composites and Lightweight Concrete 8(3): 171-180.

Salas, J., Castro, J.V. (1985): Materiales de construcción con propiedades aislantes a base de cáscara de arroz. – Informes de la Construcción 37(372): 53-64.

Semcha, A. (2006): Valorisation des sédiments de dragage: Applications dans le BTP, cas du barrage de Fergoug. – Universite de Reims 175p.

Serrano, T., Borrachero, M., MONZÓ, J.M., PAYÀ, J. (2012): Con cascarilla de arroz: diseño de mezclas y evaluación de propiedades. – Dyna 79(175): 128-136.

Sugita, S., Shoya, M. (1992): Evaluation of pozzolanic activity of rice husk ash. – Special Publication 132: 495-512.

Tamba, S. (2001): Bétons légers à base de déchets cellulosiques. – Rennes, INSA 226p.

TAMBA, S., CISSE, I., RENDELL, F., JAUBERTHIE, R. (2000): Rice husk in lightweight mortars. In Second International Symposium on Structural Lightweight Aggregate Concrete 7p.

Tran, T.P.T., Bénézet, J.C., Bergeret, A. (2014): Rice and Einkorn wheat husks reinforced poly (lactic acid)(PLA) biocomposites: Effects of alkaline and silane surface treatments of husks. – Industrial Crops and Products 58: 111-124.

Villar-Cociña, E., Valencia-Morales, E., Gonzalez-Rodrıguez, R., Hernandez-Ruız, J. (2003): Kinetics of the pozzolanic reaction between lime and sugar cane straw ash by electrical conductivity measurement: A kinetic–diffusive model. – Cement and Concrete Research 33(4): 517-524.

Wangchuk, K., Tsheten, K., Yezer, K. (2013): Green concrete for sustainable construction. – International Journal of Research in Engineering and Technology 2(11): 142-146.

Xu, W., Lo, Y.T., Ouyang, D., Memon, S.A., Xing, F., Wang, W., Yuan, X. (2015): Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste. – Construction and Building Materials 89: 90-101.

Downloads

Published

2023-12-17

How to Cite

BRIKI, L., BENZEROUAL, B., & ZIDANI, K. (2023). RECOVERY OF ASH FROM LIGNOCELLULOSIC WASTE IN THE CEMENT INDUSTRY. Quantum Journal of Engineering, Science and Technology, 4(4), 19–37. Retrieved from https://qjoest.com/index.php/qjoest/article/view/121

Issue

Section

Articles