MATHEMATICAL ANALYSIS OF INTEGRATED CONTROL MEASURES MITIGATING RIFT VALLEY FEVER SPREAD IN LIVESTOCK
Keywords:
detection, reproduction number, equilibrium points, isolation, Rift-Valley fever, sensitivityAbstract
This study explores the complex transmission dynamics of Rift Valley fever (RVF), focusing on the interactions between mosquitoes and livestock through the application of a compartmental model. The research incorporates the implementation of isolation for infected individuals as a key control measure. By calculating the basic reproduction number R0 using the next-generation matrix method, the study illuminates the conditions for achieving a disease-free equilibrium state. It is found that the disease-free equilibrium is locally asymptotically stable when (R0<1) indicating that RVF can potentially be controlled within a livestock population if R0 is kept below this critical threshold. Conversely, when (R0>1) the disease may become endemic, emphasizing the crucial need to monitor and maintain R0 at levels below 1. Additionally, the study performs a sensitivity analysis to identify key parameters that are essential for livestock policymakers and veterinary professionals to consider. Through numerical simulations, the research evaluates the effectiveness of early detection and isolation of infected livestock, in conjunction with other integrated control strategies. These simulations provide valuable insights into the dynamic behavior of RVF, aiding in the formulation of effective strategies for the management and prevention of the disease.
References
Adesanya, A.O., Olopade, I.A., Akanni, J.O., Oladapo, A.O., Omoloye, M.A. (2016a): Mathematical and Sensitivity Analysis of efficacy of condom on the dynamical transmission of Gonorrhea disease. – fImperial Journal of Interdisciplinary Research (IJIR) 2(11): 368-375.
Adesanya, A. O., Olopade, I.A., Akinwumi, T.O., Adesanya, A.A. (2016b): Mathematical Analysis of Early Treatment of Gonorrhea Infection. – American International Journal of Research in Science, Technology, Engineering & Mathematics AIJRSTEM 15(2): 16-244.
Adesola, O.I., Oloruntoyin, S.S., Emmanuel, P.M., Temilade, M.I., Adeyemi, A.G., Oladele, A.S., Mamman, A.U., Kareem, A.A. (2024a): Mathematical Modelling and Analyzing the Dynamics of Condom Efficacy and Compliance in the Spread of HIV/AIDS. – Asian Research Journal of Current Science 6(1): 54-65.
Adesola, O.I., Temilade, M.I., Emmanuel, P.M., Oladele, A.S., Adeyemi, A.G., Sunday, S., Olumuyiwa, A.S. (2024b): Mathematical Analysis of Optimal Control of Human Immunodeficiency Virus (HIV) Co-infection with Tuberculosis (TB). – Asian Research Journal of Current Science 6(1): 23-53.
Adewale, S.O., Olopade, I.A., Adeniran, G.A., Mohammed, I.T., Ajao, S.O. (2015a): Mathematical Analysis of effects of isolation on Ebola transmission Dynamics. Resarchjournalis. – Journal of Mathematics 2(2): 1-20.
Adewale, S.O., Olopade, I.A., Adeniran, G.A., Ajao, S.O. (2015b): Mathematical modelling and sensitivity analysis of HIV-TB co-infection. – Journal of advances in Mathematics 11(8): 5494-5519.
Adewale, S.O., Olopade, I.A., Ajao, S.O., Adeniran, G.A. (2015c): Mathematical analysis of diarrhea in the presence of vaccine. – International Journal of Scientific and Engineering Research 6(12): 396-404.
Adewale, S.O., Olopade, I.A., Ajao, S.O., Mohammed, I.T. (2016): Mathematical analysis of sensitive parameters on the dynamical spread of HIV. – International Journal of Innovative Research in Science, Engineering and Technology 5(5): 7624-7635.
Adeyeye, A.A., Ekong, P.S., Pilau, N.N. (2011): Rift Valley fever: the Nigerian story. – Veterinaria Italiana 47(1): 35-40.
Ajao, S., Olopade, I., Akinwumi, T., Adewale, S., Adesanya, A. (2023): Understanding the transmission dynamics and control of HIV infection: A mathematical model approach. – Journal of the Nigerian Society of Physical Sciences 5: 1389-1389.
Akinwumi, T.O., Olopade, I.A., Adesanya, A.O., Alabi, M.O. (2021): A mathematical model for the transmission of HIV/AIDS with early treatment. – Journal of Advances in Mathematics and Computer Science 36(5): 35-51.
Ba, Y., Diallo, D., Kebe, C.M.F., Dia, I., Diallo, M. (2005): Aspects of bioecology of two Rift Valley fever virus vectors in Senegal (West Africa): Aedes vexans and Culex poicilipes (Diptera: Culicidae). – Journal of Medical Entomology 42(5): 739-750.
Bird, B.H., Ksiazek, T.G., Nichol, S.T., MacLachlan, N.J. (2009): Rift Valley fever virus. – Journal of the American Veterinary Medical Association 234(7): 883-893.
Bird, B.H., McElroy, A.K. (2016): Rift Valley fever virus: Unanswered questions. – Antiviral Research 132: 274-280.
Chamchod, F., Cosner, C., Cantrell, R.S., Beier, J.C., Ruan, S. (2016): Transmission dynamics of Rift Valley fever virus: effects of live and killed vaccines on epizootic outbreaks and enzootic maintenance. – Frontiers in Microbiology 6: 15p.
Chitnis, N., Hyman, J.M., Manore, C.A. (2013): Modelling vertical transmission in vector-borne diseases with applications to Rift Valley fever. – Journal of Biological Dynamics 7(1): 11-40.
EFSA Panel on Animal Health and Welfare (EFSA AHAW Panel), Nielsen, S.S., Alvarez, J., Bicout, D.J., Calistri, P., Depner, K., Drewe, J.A., Garin‐Bastuji, B., Gonzales Rojas, J.L., Schmidt, C.G., Herskin, M. (2021): Scientific Opinion on the assessment of the control measures of the category A diseases of Animal Health Law: Highly Pathogenic Avian Influenza. – Efsa Journal 19(1): 73p.
Fawzy, M., Helmy, Y.A. (2019): The one health approach is necessary for the control of Rift Valley fever infections in Egypt: A comprehensive review. – Viruses 11(2): 24p.
Fischer, E.A., Boender, G.J., Nodelijk, G., De Koeijer, A.A., Van Roermund, H.J. (2013): The transmission potential of Rift Valley fever virus among livestock in the Netherlands: a modelling study. – Veterinary Research 44: 1-13.
Gachohi, J.M., Njenga, M.K., Kitala, P., Bett, B. (2016): Modelling vaccination strategies against Rift Valley fever in livestock in Kenya. – PLoS Neglected Tropical Diseases 10(12): 22p.
Gaff, H., Burgess, C., Jackson, J., Niu, T., Papelis, Y., Hartley, D. (2011): Mathematical model to assess the relative effectiveness of Rift Valley fever countermeasures. – International Journal of Artificial Life Research (IJALR) 2(2): 1-18.
Jupp, P.G., Kemp, A., Grobbelaar, A., Leman, P., Burt, F.J., Alahmed, A.M., Mujalli, D.A., Khamees, M.A., Swanepoel, R. (2002): The 2000 epidemic of Rift Valley fever in Saudi Arabia: mosquito vector studies. – Medical and Veterinary Entomology 16(3): 245-252.
Kanouté, Y.B., Gragnon, B.G., Schindler, C., Bonfoh, B., Schelling, E. (2017): Epidemiology of brucellosis, Q fever and Rift Valley fever at the human and livestock interface in northern Côte d’Ivoire. – Acta Tropica 165: 66-75.
Kasari, T.R., Carr, D.A., Lynn, T.V., Weaver, J.T. (2008): Evaluation of pathways for release of Rift Valley fever virus into domestic ruminant livestock, ruminant wildlife, and human populations in the continental United States. – Journal of the American Veterinary Medical Association 232(4): 514-529.
Mehmood, Q., Irfan, M., Ogunkola, I.O., Jaguga, F., Ullah, I. (2021): Rift Valley fever and COVID-19 outbreak in Kenya: a double whammy. – Ethics, Medicine, and Public Health 19: 3p.
Métras, R., Fournié, G., Dommergues, L., Camacho, A., Cavalerie, L., Mérot, P., Keeling, M.J., Cetre-Sossah, C., Cardinale, E., Edmunds, W.J. (2017): Drivers for Rift Valley fever emergence in Mayotte: A Bayesian modelling approach. – PLoS Neglected Tropical Diseases 11(7): 19p.
Mpeshe, S.C., Haario, H., Tchuenche, J.M. (2011): A mathematical model of Rift Valley fever with human host. – Acta Biotheoretica 59(3-4): 231-250.
Musibau, O., Muritala, A.A., Isaac, A.O., Adelani, O.A., Akeem, O.Y. (2022): Mathematical analysis of sensitive parameters due to dynamic transmission of Ebola virus disease. – Comprehensive Research and Reviews in Multidisciplinary Studies 1(01): 001-016.
Nanyingi, M., Munyua, P., Kiama, S., Muchemi, G., Thumbi, S., Bitek, A., Bett, B., Muriithi, R., Njenga, M. (1931): A systematic review of Rift Valley Fever epidemiology. – Infection Ecology & Epidemiology 12p.
Oguntolu, F.A., Yavalah, D.W., Udom, C.F., Peter, O.J., Oshinubi, K. (2022): Mathematical modelling for the transmission dynamics of Rift Valley fever virus with human host. – Jambura Journal of Mathematics 3(1): 17-22.
Olopade, A.I., Adesanya, A.O., Akinwumi, T.O. (2021a): Mathematical transmission of SEIR epidemic model with natural immunity. – Asian Journal of Pure and Applied Mathematics 3(1): 19-29.
Olopade, I.A., Adewale, S.O., Muhammed, I.T., Adeniran, G.A., Ajao, S., Ogunsola, A.W. (2021b): Effect of effective contact tracing in curtaining the spread of Covid-19. – Asian Journal of Research in Biosciences 3(2): 161-177.
Olopade, I.A., Adesanya, A.O., Mohammed, I.T., Afolabi, M.A. (2017): Mathematical analysis of the global dynamics of an SVEIR epidemic model with herd immunity. – International Journal of Science and Engineering Investigations 6(10): 141-148.
Olopade, I.A., Adewale, S.O., Mohammed, I.T., Ajao, S.O., Oyedemi, O.T. (2016): Mathematical analysis of the role of detection in the dynamical spread of HIV-TB Co-infection. – Journal of Advances in Mathematics 11(10): 5715-5740.
Olopade, I.A., Ajao, S.O., Adeniran, G.A., Adamu, A.K., Adewale, S.O., Aderele, O.R. (2022): Mathematical Transmission of Tuberculosis (TB) with Detection of Infected Undetected. – Asian Journal of Research in Medicine and Medical Science 4(1): 100-119.
Pedro, S.A., Abelman, S., Ndjomatchoua, F.T., Sang, R., Tonnang, H.E. (2014): Stability, bifurcation and chaos analysis of vector-borne disease model with application to rift valley fever. – PloS One 9(10): 19p.
Pedro, S.A., Abelman, S., Tonnang, H.E. (2016): Predicting Rift Valley fever inter-epidemic activities and outbreak patterns: insights from a stochastic host-vector model. – PLoS Neglected Tropical Diseases 10(12): 26p.
Pepin, M., Bouloy, M., Bird, B.H., Kemp, A., Paweska, J. (2010): Rift Valley fever virus (Bunyaviridae: Phlebovirus): an update on pathogenesis, molecular epidemiology, vectors, diagnostics and prevention. – Veterinary Research 41(6): 40p.
Philemon, M.E., Olopade, I.A., Ogbaji, E.O. (2023): Mathematical Analysis of the Effect of Quarantine on the Dynamical Transmission of Monkey Pox. – Asian Journal of Pure and Applied Mathematics 5(1): 473-492.
Sissoko, D., Giry, C., Gabrie, P., Tarantola, A., Pettinelli, F., Collet, L., D’Ortenzio, E., Renault, P., Pierre, V. (2009): Rift valley fever, Mayotte, 2007-2008. – Emerging Infectious Diseases 15(4): 568-570.
Turell, M.J., Rossi, C.A., Bailey, C.L. (1985): Effect of extrinsic incubation temperature on the ability of Aedes taeniorhynchus and Culex pipiens to transmit Rift Valley fever virus. – The American Journal of Tropical Medicine and Hygiene 34(6): 1211-1218.
World Health Organization (WHO) (2018): Rift Valley fever. – WHO 8p.